品質評価センター

NEC

衝擊試験

包装貨物評価試験並びに 製品評価試験等のご依頼を受け、 お客様のニーズに対応します。

包装評価だけでなく、衝撃に対する製品強度を把握するのに最適な装置です。 製品強度を知ることにより、過剰包装の予防や是正が可能です。

サービスの内容

衝撃試験とは、製品が流通過程や使用中に受ける衝撃への強度又は影響を調べる為の試験です。

(許容加速度の確認及び緩衝設計の必要性についても判断出来ます) また、自由落下による衝撃を試験装置により精密に再現し、製品の最 も壊れやすい箇所を的確に調べ、限界値を把握することも可能です。

■対応実績規格

- · J I S Z 0 2 0 0
- · J I S Z 0 2 0 2
- ·ISTA
- M I L
- ※内容品に加速度ピックアップを取り付けることで衝撃加速度の 測定も可能

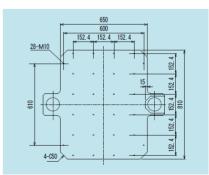
基本システム

衝擊試験機

・メーカー: LANSMONT CORPORATION (USA)

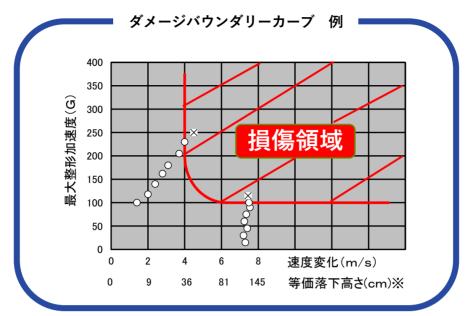
・型式:MODEL 65/81・発生パルス波形:正弦波、台形波

·最大加速度:正弦波600G、台形波120G


・最大速度変化:7.62m/sec ・作用時間:2~60msec

・試料台寸法:650×810 (mm)

·最大搭載質量:227kg


制御波形サンプル

試料台寸法

2008年国際安全輸送協会(ISTA)による認定を取得済みです。 規格に準拠した試験設備を活用し、信頼性の高い評価試験を提供します。

- ※反発係数0.5の場合
- ・衝撃試験機で製品強度確認試験をすると、ダメージバウンダリーカーブ(JIS Z 0119)が得られます。 ※ダメージバウンダリーカーブとは、どの程度の衝撃が製品にダメージを与えるかを技術的に見極めるための曲線です。
- ・ダメージの原因となる衝撃には【速度変化】=横軸と【加速度】=縦軸 という2つの要素があります。
- ・上のグラフ(例)でいうと速度変化 4 m/s 以下の衝撃であれば、加速度がたとえ 1 、0 0 0 G 発生しても、製品は壊れません。 しかし、速度変化 4 4 m/ s を超えると 2 0 0 G (許容加速度 1 0 0 G の 2 6)から徐々に許容加速度が下がっていき 6 2 8 m/ s (許容速度変化 4 m/ s の 1 5 7 倍)以上の速度変化では、 1 0 G 以上で破損することが分かります。

製品強度を知ることにより、 過剰包装の是正が可能です!

- ※速度変化とは衝撃加速度波形の面積のことで、衝撃エネルギー成分といえます。
 - 速度変化が大きいほどエネルギー成分も大きくなります。
- 緩衝材の反発を考えない場合は自由落下時の衝突速度と同じ値となります。
- ※加速度とは1秒間に増加する速度の変化量。ここでは衝撃の大きさを表し、製品強度を表す場合、一般的に使用されています。
- ※等価落下高さとは速度変化と反発係数から求めた落下高さ。上記グラフでは36cmが緩衝包装していない製品の許容落下高さとなります。
- ※反発係数とは衝突前後の速度の比。落下衝突速度とは跳ね返りの速度が同じなら1,跳ね返りが無ければ0となり、現実的な値は0.25~0.75となります。

■ 問い合わせ先

日通NECロジスティクス株式会社 包装技術部

〒183-0033 東京都府中市分梅町3-59-1

TEL: 050(3646)9143 FAX: 050(3646)9197

お問合せフォーム: https://www.nittsu-necl.co.jp/contact

Webサイト : https://www.nittsu-necl.co.jp

- 本紙に掲載された社名、商品名は各社の商標または登録商標です。
- 本誌に掲載されている内容に関して、無断転用や無断転写を禁じます。

Webサイト 包装・梱包ソリューション

